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 The online exam app used for: 

 lectures (attendance) 
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 examinations 
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General theory 



 Scattering parameters 
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               meaning: port 2 is terminated in 
matched load to avoid reflections towards 
the port 
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 S11 and S22 are reflection coefficients at ports 
1 and 2 when the other port is matched 
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 S21 si S12 are signal amplitude gain when 
the other port is matched 
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 a,b 
 information about signal power AND signal phase 

 Sij 
 network effect (gain) over signal power including 

phase information 
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Impedance Matching 
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Impedance matching 



 Transmission lines 
 Impedance matching and tuning 
 Directional couplers 
 Power dividers 
 Microwave amplifier design 
 Microwave filters 
 Oscillators and mixers ? 
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Matching ZL load to Z0 source. 
We normalize ZL over Z0 

We must move the point denoting 
the reflection coefficient in the area 
where with a Z0 source we have:  
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 Match can be obtained if 
and only if rL = 1 

 we compensate the 
reactive part of the load 
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Zx Z0 

The source (eg. the transistor) 
having ZX needs to see a certain 
reflection coefficient ΓL towards 
the load Z0  

The matching circuit must move the 
point denoting the reflection 
coefficient in the area where for a Z0 
load (Γ0=0) we see towards it:  
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 The matching sections 
needed to move 
 ΓL in Γ0 
 Γ0 in ΓL 

 are identical. They differ 
only by the order in 
which the elements are 
introduced into the 
matching circuit 

 As a result, we can use in 
match design the same: 
 methods 
 formulae 



Impedance Matching 
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 Shunt Stub 



 Series Stub 
 difficult to realize in single conductor line 

technologies (microstrip) 



Exam / Project 



 Shunt Stub 



 The sign (+/-) chosen for the series line equation 
imposes the sign used for the shunt stub equation  
 “+” solution 
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 We choose one of the two possible solutions 
 The sign (+/-) chosen for the series line equation 

imposes the sign used for the shunt stub equation 
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 Charaterized with S parameters 
 normalized at Z0 (implicit 50Ω) 
 Datasheets: S parameters for specific bias 

conditions 
 





 Touchstone file format (*.s2p) 

! SIEMENS Small Signal Semiconductors 
! VDS = 3.5 V     ID = 15 mA      
# GHz  S  MA  R  50 

!  f         S11            S21            S12            S22 

! GHz     MAG   ANG      MAG   ANG      MAG   ANG      MAG   ANG 

 1.000 0.9800  -18.0   2.230  157.0  0.0240   74.0  0.6900  -15.0 

 2.000 0.9500  -39.0   2.220  136.0  0.0450   57.0  0.6600  -30.0 

 3.000 0.8900  -64.0   2.210  110.0  0.0680   40.0  0.6100  -45.0 

 4.000 0.8200  -89.0   2.230   86.0  0.0850   23.0  0.5600  -62.0 

 5.000 0.7400 -115.0   2.190   61.0  0.0990    7.0  0.4900  -80.0 

 6.000 0.6500 -142.0   2.110   36.0  0.1070  -10.0  0.4100  -98.0 

!  
!  f       Fmin   Gammaopt  rn/50 

! GHz       dB    MAG  ANG    - 
 2.000     1.00  0.72   27   0.84 

 4.000     1.40  0.64   61   0.58 



 Two ports in which matching influences the 
power transfer 

Pav S Pin 
Pav L PL 
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Input  and output can be 
treated independently 

 Linin 

11Sin 



 For an amplifier two-port we are interested in: 
 stability 
 power gain 
 noise (sometimes – small signals) 
 linearity (sometimes – large signals) 
 



Microwave Amplifiers 



 For an amplifier two-port we are interested in: 
 stability 
 power gain 
 noise (sometimes – small signals) 
 linearity (sometimes – large signals) 
 



 Two cases possible: (a) stable outside/ (b) stable inside 



 ATF-34143 at Vds=3V  Id=20mA. 
 @0.518GHz 

 



 ATF-34143 at Vds=3V  Id=20mA. 
 @0.518GHz 
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Microwave Amplifiers 



 For an amplifier two-port we are interested in: 
 stability 
 power gain 
 noise (sometimes – small signals) 
 linearity (sometimes – large signals) 
 



 Two ports in which matching influences the 
power transfer 

Pav S Pin 
Pav L PL 
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 Simultaneous matching can be achieved if 
and only if the amplifier is unconditionally 
stable at the operating frequency, and |Γ|<1 
solutions are those with “–” sign of quadratic 
solutions 
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Microwave Amplifiers 



 For an amplifier two-port we are interested in: 
 stability 
 power gain 
 noise (sometimes – small signals) 
 linearity (sometimes – large signals) 
 



 Assumes the amplifier device unilateral 
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Input  and output can be 
treated independently 
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 Allows estimation of the error introduced by 
the unilateral assumption 
 
 

 We compute U then the maximum and 
minimum deviation of GTU from GT 

 this deviation must be accounted in the design as 
a reserve gain against the target gain 
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 The centers of each family of circles lie along 
straight lines given by the angle of 

 Circles are plotted (traditionally, CAD) in 
logarithmic scale ([dB]) 

 formulas are in linear scale! 

 The circle for GS = 0 dB will always pass 
through the origin of the complex plane 
(center of the Smith chart ) 
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 Circles are plotted for requested values (in dB!) 
 It is usefull to compute GSmax and GLmax before 
 in order to request relevant circles 



Microwave Amplifiers 



 For an amplifier two-port we are interested in: 
 stability 
 power gain 
 noise (sometimes – small signals) 
 linearity (sometimes – large signals) 
 



 The noise figure F, is a measure of the reduction in signal-
to-noise ratio between the input and output of a device, 
when (by definition) the input noise power is assumed to 
be the noise power resulting from a matched resistor at T0 
= 290 K (reference noise conditions) 
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 We identify the two terms: 
 amplified input noise 
 internally generated noise 

 When the input noise does not 
correspond to reference noise 
conditions (N1 ≠ N0) 
 the internally generated noise 

does not change 
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 Friis Formula shows that: 
 the overall noise figure of a cascaded system is 

largely determined by the noise characteristics of 
the first stage 

 the noise introduced by the following stages is 
reduced: 
▪ -1 

▪ division by G (usually G > 1) 
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 Effects of Friis Formula: 
 in multi stage amplifiers: 
 it’s essential that the first stage is as noiseless as possible 

even if that means sacrificing power gain 
 the following stages can be optimized for power gain 

 in single stage amplifiers: 
 in the input matching circuit it’s important to have 

noiseless elements (pure reactance, lossless lines) 
 output matching circuit has less influence on the noise 

(noise generated at this level appears when the desired 
signal has already been amplified by the transistor) 















321

4

21

3

1

2
1

111

GGG

F

GG

F

G

F
FFcas

kTBRV efn 4)(  kTBPn 



 An input mismatched amplifier(0) 
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 Good noise figure requires good impedance 
matching 



 ATF-34143 at Vds=3V  Id=20mA. 
 @5GHz 
 S11 = 0.64139° 

 S12 = 0.119-21° 

 S21 = 3.165 16° 

 S22 = 0.22 146° 

 Fmin = 0.54 (tipic [dB] !) 

 Γopt = 0.45 174° 

 rn = 0.03 

 

!ATF-34143 
!S-PARAMETERS at Vds=3V  Id=20mA.   LAST UPDATED 01-29-99 
 
# ghz s ma r 50  
 
2.0  0.75  -126  6.306  90  0.088  23  0.26  -120 
2.5  0.72  -145  5.438  75  0.095  15  0.25  -140 
3.0  0.69  -162  4.762  62  0.102  7  0.23  -156 
4.0  0.65  166  3.806  38  0.111  -8  0.22  174 
5.0  0.64  139  3.165  16  0.119  -21  0.22  146 
6.0  0.65  114  2.706  -5  0.125  -35  0.23  118 
7.0  0.66  89  2.326  -27  0.129  -49  0.25  91 
8.0  0.69  67  2.017  -47  0.133  -62  0.29  67 
9.0  0.72  48  1.758  -66  0.135  -75  0.34  46 
 
!FREQ   Fopt    GAMMA OPT       RN/Zo 
!GHZ     dB     MAG     ANG      - 
 
2.0  0.19  0.71  66  0.09 
2.5  0.23  0.65  83  0.07 
3.0  0.29  0.59  102  0.06 
4.0  0.42  0.51  138  0.03 
5.0  0.54  0.45  174  0.03 
6.0  0.67  0.42  -151  0.05 
7.0  0.79  0.42  -118  0.10 
8.0  0.92  0.45  -88  0.18 
9.0  1.04  0.51  -63  0.30 
10.0  1.16  0.61  -43  0.46 
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 3 noise parameters (2reals + 1 complex): 
 
 
 
 
 
 
 

 Γopt optimum source reflection coefficient that 
results in minimum noise figure 
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Circles!! 



Γopt = 0.45 174° 



 We define N (noise figure parameter) 
 N constant for F constant 
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 The locus in the complex plane ΓS of the points with 
constant noise figure is a circle 

 Interpretation: Any reflection coefficient ΓS which plotted 
in the complex plane lies on the circle drawn for Fcircle will 
lead to a noise factor F = Fcircle 
 Any reflection coefficient ΓS plotted outside this circle will lead 

to a noise factor F > Fcircle 
 Any reflection coefficient ΓS plotted inside this circle will lead to 

a noise factor F < Fcircle 
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 The noise internally generated by the transistor 
depends only by the input matching circuit 

 A minimum noise figure is possible (NFmin – a 
datasheet/”s2p file” parameter for the transistor) 

 If we design a low noise amplifier (LNA) the usual 
design technique is as follows: 
 design of the input matching circuit solely (largely) for 

noise optimization 

 design of output matching circuit for gain 
compensation/optimization (if lossy circuits are used 
the output matching circuit noise can be added but the 
transistor noise is not influenced) 



 Usually a transistor suitable for implementing an LNA 
at a certain frequency will have input gain circles and 
noise circles in the same area for ΓS 



 Connecting the amplifier (transistor) directly 
to the source with Z0 generate a reflection 
coefficient seen towards the source equal 
with 0 (complex number, 0 = 0 + 0·j) 
 most of the time this reflection coefficient does 

not offer optimum noise/gain 

[S] 
V0 

Z0 
ΓS = 0 Γ0 = 0 



 We plot on the complex plane (Smith Chart) the 
stability/gain/noise circles (depending on the particular 
application) 

 We choose a point with a suitable position relative to these 
circles (also application dependent) 

 We determine the input reflection coefficient corresponding 
to this point, S 

 966.177412.0S



 We insert the input matching circuits which 
allows the transistor to see towards the source 
the previously determined reflection coefficient 
S 

[S] 
V0 

Z0 
ΓS  0 Γ0 = 0 

Input 
matching 
circuit 



 Easiest to design matching section consists in 
the insertion of (in order  from the transistor 
towards the Z0 source): 
 a series Z0 line, with electrical length  

 a shunt stub, open-circuited, made from a Z0 line, 
with electrical length sp 
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 Computation depends solely on S (magnitude 
and phase) 
 
 

 The sign (+/-) chosen for the series line equation 
imposes the sign used for the shunt stub equation 

[S] 
V0 

Z0 
ΓS  0 Γ0 = 0 Z0 , 

Z0 ,sp 

  SS   2cos
2

1

2
tan

S

S

sp











0.2 0.5 
1.0 

+0.2 

+0.5 

+1.0 

+2.0 

-0.2 

-0.5 

-1.0 
-2.0 

2.0 

0° 

90° 

135° 

225° 

270° 

V0 

Z0 

YL 

ΓL Γ0 

315° 

180° 

|Γ|=1 

45° 

j·B1 

1ingLin 

V0 

Z0 ZL 

ΓL Zin,Γ0 
Z0,β·l 



 ATF-34143 at Vds=3V  Id=20mA. 
 @5GHz 
 S11 = 0.64139° 

 S12 = 0.119-21° 

 S21 = 3.165 16° 

 S22 = 0.22 146° 

 Fmin = 0.54 (tipic [dB] !) 

 Γopt = 0.45 174° 

 rn = 0.03 

 

!ATF-34143 
!S-PARAMETERS at Vds=3V  Id=20mA.   LAST UPDATED 01-29-99 
 
# ghz s ma r 50  
 
2.0  0.75  -126  6.306  90  0.088  23  0.26  -120 
2.5  0.72  -145  5.438  75  0.095  15  0.25  -140 
3.0  0.69  -162  4.762  62  0.102  7  0.23  -156 
4.0  0.65  166  3.806  38  0.111  -8  0.22  174 
5.0  0.64  139  3.165  16  0.119  -21  0.22  146 
6.0  0.65  114  2.706  -5  0.125  -35  0.23  118 
7.0  0.66  89  2.326  -27  0.129  -49  0.25  91 
8.0  0.69  67  2.017  -47  0.133  -62  0.29  67 
9.0  0.72  48  1.758  -66  0.135  -75  0.34  46 
 
!FREQ   Fopt    GAMMA OPT       RN/Zo 
!GHZ     dB     MAG     ANG      - 
 
2.0  0.19  0.71  66  0.09 
2.5  0.23  0.65  83  0.07 
3.0  0.29  0.59  102  0.06 
4.0  0.42  0.51  138  0.03 
5.0  0.54  0.45  174  0.03 
6.0  0.67  0.42  -151  0.05 
7.0  0.79  0.42  -118  0.10 
8.0  0.92  0.45  -88  0.18 
9.0  1.04  0.51  -63  0.30 
10.0  1.16  0.61  -43  0.46 



 Low Noise Amplifier 
 At the input matching a compromise is required 

between: 

 noise (input constant noise figure circles) 

 gain (input constant gain circles) 

 stability (input stability circle) 

 At the output matching noise is not influenced. 
A compromise is required between : 

 gain (output constant gain circles) 

 stability (output stability circle) 



 In this particular case GLmax = 0.21 dB, the transistor could 
be used directly connected to the 50Ω load 

 The absence of the output matching circuit is not 
recommended. While the attainable power gain is low, it’s 
absence eliminates the possibility to use it to compensate 
an improper gain generated by the noise optimization of 
the input matching circuit  
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 For the input matching circuit 
 noise circle CZ: 0.75dB 
 input constant gain circles CCCIN: 1dB, 1.5dB, 2 dB 

 We choose (small Q  wide bandwidth) position m1 



 If we can afford a 1.2dB decrease of the input gain for 
better NF,Q (Gs = 1 dB), position m1 above is better 

 We obtain better (smaller) NF 



 Position m1 in complex plane (Smith Chart) 
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 output constant gain circles CCCOUT: -0.4dB, -0.2dB, 0dB, +0.2dB 
 the lack of noise restrictions allows optimization for better gain (close 

to maximum – position m4) 



 Position m4 in complex plane (Smith Chart) 
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 We estimate a gain (in unilateral assumption, 
±0.9 dB) 
 
 

 We estimate a noise factor well bellow 0.75dB 
(quite close to the minimum ~0.6 dB) 

       dBGdBGdBGdBG LST  0

  dBdBdBdBdBGT 2.112.0101 





 





 this structure is frequently encountered in 
radiocommunication systems 



 Two ways of implementing filters in microwave 
frequency range 

 microwave specific structures (coupled lines, dielectric 
resonators, periodic structures) 

 filter synthesis with lumped elements followed by 
implementation with transmission lines 

 the first strategy leads to more efficient filters 
but: 

 has lower generality 

 design is often difficult (lack of analytical relationships) 



 Filter is designed with lumped elements (L/C) 
followed by implementation with distributed 
elements (transmission lines) 

 general 

 analytical relationships easy to implement on the 
computer 

 efficient 

 The preferred procedure is insertion loss 
method 



 |Γ(ω)|2 is an even function of ω 
 
 
 
 

 Choosing M and N polynomials appropriately 
leads to a filter with a completely specified 
frequency response 
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 We control the power loss ratio/attenuation 
introduced by the filter: 

 in the passband (pass all frequencies) 

 in the stopband (reject all frequencies) 



 Attenuation 
 in passband 

 in stopband 

 most often in dB 
 Frequency range 
 passband 

 stopband  

 cutoff frequency ω1’ 
usually normalized  
(= 1) 



 We choose the right polynomials to design an 
low-pass filter (prototype) 

 The low-pass prototype are then converted  
to the desired other types of filters 

 low-pass, high-pass, bandpass, or bandstop 



 Maximally flat filters (Butterworth, binomial): 
provide the flattest possible passband response 

 Equal ripple filters (Chebyshev): provide a 
sharper cutoff but the passband response will 
have ripples 

 Elliptic function filters, they have equal-ripple 
responses in the passband as well as in the 
stopband, 

 Linear phase filters, offer linear phase response 
in the passband to avoid signal distortion 
(important in some applications) 



 



 



 Polynomial 
 
 

 For 
 
 

 attenuation increases 
at a rate of 20·N dB/decade 

 k gives the attenuation at cutoff frequency  
(3dB cutoff imposes k = 1) 
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 Polynomial 
 
 

 For 
 
 

 attenuation increases 
at a rate of 20·N dB/decade (also) 

 attenuation is (22N)/4 greater than the binomial 
response at any given frequency where 

 the passband ripples: 1 + k2, k gives the ripple 
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Attenuation versus normalized frequency for 
maximally flat filter prototypes 



 

Attenuation versus normalized frequency for 
equal-ripple filter prototypes (3dB) 



 

Attenuation versus normalized frequency for 
equal-ripple filter prototypes (0.5dB) 



 



 Prototype filters are: 
 Low-Pass Filters (LPF) 
 cutoff frequency ω0 = 1 rad/s (f0 = 0.159 Hz) 
 connected to a source with R = 1Ω 

 The number of reactive elements  (L/C) is the 
order of the filter (N) 

 Reactive elements are alternated: series L / 
shunt C 

 There two prototypes with the same response, a 
prototype beginning with a shunt C element, 
and a prototype beginning with a series L 
element 



 We define filter parameters gi, i=0,N+1 
 gi are the element values in the prototype 

filter 
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 Formulas for filter parameters  
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 Formulas for filter parameters (iterative) 
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 For even N order of 
the filter (N = 2, 4, 6, 
8 ...) equal-ripple 
filters must closed by 
a load impedance 
gN+1 ≠ 1 

 If the application 
doesn’t allow this, 
supplemental 
impedance matching 
is required  (quarter-
wave transformer, 
binomial ...) to gL = 1 



 Design a 3rd order bandpass filter with 0.5 
dB ripples in passband. The center frequency 
of the filter should be 1 GHz. The fractional 
bandwidth of the passband should be 10%, 
and the impedance 50Ω. 



 0.5dB equal-ripple table or design formulas: 

 g1 = 1.5963 = L1/C3, 

 g2 = 1.0967 = C2/L4, 

 g3 = 1.5963 = L3/C5, 

 g4=1.000 =RL 

 



 ω0 = 1 rad/s (f0 = ω0 / 2π = 0.159 Hz) 
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