Lecture 10
2022/2023
Microwave Devices and Circuits
for Radiocommunications

2022/2023

2C/1L, MDCR

- Attendance at minimum 7 sessions (course or laboratory)
- Lectures- associate professor Radu Damian
- Tuesday 12-14, Online, P8
- E-50\% final grade
- problems + (2p atten. lect.) + (3 tests) + (bonus activity)
- first test L1: 21-28.02.2023 (t2 and t3 not announced, lecture)
" 3att.=+0.5p
- all materials/equipments authorized

2022/2023

- Laboratory - associate professor Radu Damian
- Tuesday 08-12, II. 13 / (08:10)
- L-25\% final grade
- ADS, 4 sessions
- Attendance + personal results
- P - 25\% final grade
- ADS, 3 sessions (-1? 21.02.2022)
" personal homework

Materials

- http://rf-opto.etti.tuiasi.ro

© Laboratorul de Microunde si Op: $\times+$
 $\leftarrow \rightarrow$ C (i) Not secure | rf-opto.etti.tuiasi.ro/microwave_cd.php?chg_lang=0
 Main Courses Master Staff Research Students Admin
 Microwave CD Optical Communications Optoelectronics Internet Antennas Practica Networks Educational soffware

Microwave Devices and Circuits for Radiocommunications (English)
Course: MDCR (2017-2018)
Course Coordinator: Assoc.P. Dr. Radu-Florin Damian
Code: EDOS412T
Discipline Type: DOS; Alternative, Specialty
Enrollment Year: 4, Sem. 7
Activities
Course: Instructor: Assoc.P. Dr. Radu-Florin Damian, 2 Hours/Week, Specialization Section, Timetable: Laboratory: Instructor: Assoc.P. Dr. Radu-Florin Damian, 1 Hours/Week, Group, Timetable:
Evaluation
Type: Examen
A: 50%, (Test/Colloquium)
B: 25\%, (Seminary/Laboratory/Project Activity)
D: 25%, (Homework/Specialty papers)
*林English I D Romana I

Grades

Aggregate Results
Attendance
Course
Laboratory.
Lists
Bonus-uri acumulate (final). Studenti care nu pot intra in examen
Materials
Course Slides
MDCR Lecture 1 (pdf, 5.43 MB , en, ma
MDCR Lecture 2 (pdf, 3.67 MB , en,
MDCR Lecture 3 (pdf, 4.76 MB , en
MDCR Lecture 4 (pdf, 5.58 MB, en, 2)

Online Exams

In order to participate at online exams you must get ready following

Materials

- RF-OPTO
- http://rf-opto.etti.tuiasi.ro
- David Pozar, "Microwave Engineering", Wiley; 4th edition, 2011
- 1 exam problem \leftarrow Pozar
- Photos
- sent by email/online exam
- used at lectures/laboratory

Access

Not customized

Acceseaza ca acest student

Nume

Note obtimate

Disciplina	Tip	Data	Descriere	Nota	Puncte	Obs.
TW	Tehnologii Web					
	N	$17 / 01 / 2014$	Nota finala	10	-	
	A	$17 / 01 / 2014$	Colocviu Tehnologii Web 2013/2014	10	7.55	
	B	$17 / 01 / 2014$	Laborator Tehnologii Web 2013/2014	9	-	
	D	$17 / 01 / 2014$	Tema Tehnologii Web 2013/2014	9	-	

Online

- access to online exams requires the password received by email

Online

- access email/password

Main	Courses	Master	Staff	Resear
Grades	Student List	Exams	Photos	
POPESCU GOPO ION				
Fotografia nu exista		Date:		
		Grupa	5700 (2019/2020)	
		Specializarea	Inginerie electronica sitelec	
		Marca	7000000	

Password

received by email

Important message from RF-OPTO

Inbox x

Radu-Florin Damian
to me, POPESCU -
$\overline{\text { }}_{\text {A }}$ Romanian * $>$ English * Translate message

Laboratorul de Microunde si Optoelectronica
Facultatea de Electronica, Telecomunicatii si Tehnologia Informatiei
Universitatea Tehnica "Gh. Asachi" las

In atentia: POPESCU GOPO ION
Parola pentru a accesa examenele pe server-ul rf-opto este Parola:

Identificati-va pe server, cu parola, cat mai rapid, pentru confirmare
Memorati acest mesaj intr-un loc sigur, pentru utilizare ulterioara

Attention: POPESCU GOPO ION
The password to access the exams on the rf-opto server is Password:

Login to the server, with this password, as soon as possible, for confirmation
Save this message in a safe place for later use

Attention: POPESCU GOPO ION
The password to access the exams on the rf-opto server is Password:

Login to the server, with this password, as soon as possible, for confirmation.
Save this message in a safe place for later use

Online exam manual

- The online exam app used for:
=-lectures (attendance)
- laboratory
- project
-examinations

Materials

Other data

Manual examen on-line ($p d f, 2.65$ yB, ro, II) Simulare Examen (video) (mp4, 65) 12 MB, ro, II)

Microwave Devices and Circuits (Enqlis

Examen online

- always against a timetable
- long period (lecture attendance/laboratory results)
"-short period (tests: 15min, exam: 2h)
-

Announcement

This is a "fake" exam, introduced to familiarize you with the server interface and to perform the necessary actions during an exam: thesis scan, selfie, use email for cc

Server Time

All exame aro hased on the server's time zone (it may be different from local time). For reference time on the server is now:

Online results submission

many numerical values／files

Sixam	net		Reminem																		
					${ }^{\frac{85}{585} 5}$	14833	15588	20212	18935	1809	3029	1 15．19	79.9	${ }^{37}$	689						
溉		$\frac{5}{50}$		$\frac{85}{\frac{85}{522} .}$		2587	1355	${ }^{3,464}$	3579	5558	22212	10.6	。	。		。					
		$\underbrace{\substack{\text { cise }}}_{\text {cose }}$					－	\bigcirc	。	－	\bigcirc	\bigcirc		－							
既						50	so	50	50	50	50	50									
						${ }_{18602}$	150.5	${ }_{1828} 18$	1335	92.12	121.6	14.48		35.19							
	$\frac{85}{\substack{\text { sicis．} \\ 2020}}$	$\xrightarrow{\frac{8}{\text { che }} \text { S．}}$			${ }_{\text {cosem }}^{\text {che }}$	1122	80． 8	202	1008	135.	1837	157.6									
										${ }^{7271}$				36.1							
							1225		${ }^{323}$	5436											
													2.05	33.6							

Online results submission

- many numerical values

Online results submission

Grade = Quality of the work +

 + Quality of the submissionRecap

General theory
Microwave Network Analysis

Scattering matrix - S

- Scattering parameters

- $V_{2}^{+}=0$ meaning: port 2 is terminated in matched load to avoid reflections towards the port

$$
\Gamma_{2}=0 \rightarrow V_{2}^{+}=0
$$

Scattering matrix - S

$$
\begin{aligned}
& {\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]=\left[\begin{array}{ll}
S_{11} & S_{12} \\
S_{21} & S_{22}
\end{array}\right] \cdot\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]} \\
& S_{11}=\left.\frac{b_{1}}{a_{1}}\right|_{a_{2}=0} \quad S_{22}=\left.\frac{b_{2}}{a_{2}}\right|_{a_{1}=0}
\end{aligned}
$$

- S_{11} and S_{22} are reflection coefficients at ports 1 and 2 when the other port is matched

Scattering matrix - S

- S_{21} si S_{12} are signal amplitude gain when the other port is matched

Scattering matrix - S

- a,b
" information about signal power AND signal phase
- $S_{i j}$
- network effect (gain) over signal power including phase information

Impedance Matching
The Smith Chart

The Smith Chart

The Smith Chart

Impedance matching
Impedance Matching with lumped elements (L Networks)

Course Topics

- Transmission lines
- Impedance matching and tuning
- Directional couplers
- Power dividers
- Microwave amplifier design
- Microwave filters
-Oscillators and mixers-?

The Smith Chart, reflection coefficient, impedance matching

Matching, series reactance

$$
\begin{aligned}
& z_{L}=r_{L}+j \cdot x_{L} \\
& z_{\text {in }}=r_{L}+j \cdot\left(x_{L}+x_{1}\right) \\
& r_{\text {in }}=r_{L}
\end{aligned}
$$

- Match can be obtained if and only if $r_{L}=1$
- we compensate the reactive part of the load

$$
j \cdot x_{1}=-j \cdot x_{L}
$$

Smith chart, $\mathrm{r}=1$ and $\mathrm{g}=1$

The Smith Chart, matching, $Z_{L}=Z_{o}$

0 The source (eg. the transistor) having Z_{X} needs to see a certain reflection coefficient Γ_{L} towards the load $Z_{\text {。 }}$
The matching circuit must move the point denoting the reflection coefficient in the area where for a $Z_{\text {o }}$ load ($\Gamma_{0}=0$) we see towards it:
$\Gamma=\Gamma_{L}$ perfect match
$\left|\Gamma-\Gamma_{L}\right| \leq \Gamma_{m}$ "good enough" match

The Smith Chart, matching ,

$Z_{L} \neq Z_{0} Z_{L}=Z_{0}$

- The matching sections needed to move
- $\Gamma_{\mathrm{L}} \mathrm{in} \Gamma_{\mathrm{o}}$
- Γ_{0} in Γ_{L}
- are identical. They differ only by the order in which the elements are introduced into the matching circuit
- As a result, we can use in match design the same:
" methods
- formulae

Impedance Matching
Impedance Matching with Stubs

Smith chart, $\mathrm{r}=1$ and $\mathrm{g}=1$

Single stub tuning

- Shunt Stub

Single stub tuning

- Series Stub
- difficult to realize in single conductor line technologies (microstrip)

Analytical solutions

Exam / Project

Case 1, Shunt Stub

- Shunt Stub

Analytical solution, usage

$\cos (\varphi+2 \theta)=-\left|\Gamma_{S}\right|$
$\Gamma_{s}=0.593 \angle 46.85^{\circ}$

$$
\theta_{s p}=\beta \cdot l=\tan ^{-1} \frac{\bar{\mp} 2 \cdot\left|\Gamma_{S}\right|}{\sqrt{1-\left|\Gamma_{S}\right|^{2}}}
$$

$\left|\Gamma_{S}\right|=0.593 ; \quad \varphi=46.85^{\circ}$

$$
\cos (\varphi+2 \theta)=-0.593 \Rightarrow(\varphi+2 \theta)= \pm 126.35^{\circ}
$$

- The sign (+/-) chosen for the series line equation imposes the sign used for the shunt stub equation
" "+" solution \downarrow

$$
\begin{align*}
& \left(46.85^{\circ}+2 \theta\right)=+126.35^{\circ} \quad \theta=+39.7^{\circ} \quad \operatorname{Im} y_{S} \\
& \theta_{s p}=\tan ^{-1}\left(\operatorname{Im} y_{S}\right)=-55.8^{\circ}\left(+180^{\circ}\right) \rightarrow \theta_{s p}=124.2^{\circ}
\end{align*}
$$

" "-" solution \downarrow

$$
\left(46.85^{\circ}+2 \theta\right)=-126.35^{\circ} \quad \theta=-86.6^{\circ}\left(+180^{\circ}\right) \rightarrow \theta=93.4^{\circ}
$$

$$
\operatorname{Im} y_{S}=\frac{+2 \cdot\left|\Gamma_{S}\right|}{\sqrt{1-\left|\Gamma_{S}\right|^{2}}}=+1.472 \quad \theta_{s p}=\tan ^{-1}\left(\operatorname{Im} y_{S}\right)=55.8^{\circ}
$$

Analytical solution, usage

- We choose one of the two possible solutions
- The sign (+/-) chosen for the series line equation imposes the sign used for the shunt stub equation

$$
\begin{array}{ll}
l_{1}=\frac{39.7^{\circ}}{360^{\circ}} \cdot \lambda=0.110 \cdot \lambda & l_{1}=\frac{93.4^{\circ}}{360^{\circ}} \cdot \lambda=0.259 \cdot \lambda \\
l_{2}=\frac{124.2^{\circ}}{360^{\circ}} \cdot \lambda=0.345 \cdot \lambda & l_{2}=\frac{55.8^{\circ}}{360^{\circ}} \cdot \lambda=0.155 \cdot \lambda
\end{array}
$$

Microwave Amplifiers

S parameters for transistors

Amplifier as two-port

- Charaterized with S parameters
- normalized at Zo (implicit 50 Ω)
- Datasheets: S parameters for specific bias conditions

Datasheets

NE46100

VCE = 5 V , IC $=50 \mathrm{~mA}$

FREQUENCY (MHz)	S 11		S21		S 12		S 22		K	MAG ${ }^{2}$ (dB)
	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG		
100	0.778	-137	26.776	114	0.028	30	0.555	-102	0.16	29.8
200	0.815	-159	14.407	100	0.035	29	0.434	-135	0.36	26.2
500	0.826	-177	5.855	84	0.040	38	0.400	-162	0.75	21.7
800	0.827	176	3.682	76	0.052	43	0.402	-169	0.91	18.5
1000	0.826	173	2.963	71	0.058	47	0.405	-172	1.02	16.3
1200	0.825	170	2.441	66	0.064	47	0.412	-174	1.08	14.0
1400	0.820	167	2.111	61	0.069	47	0.413	-176	1.17	12.4
1600	0.828	165	1.863	57	0.078	54	0.426	-177	1.15	11.4
1800	0.827	162	1.671	53	0.087	50	0.432	-178	1.14	10.6
2000	0.828	159	1.484	49	0.093	50	0.431	-180	1.17	9.5
2500	0.822	153	1.218	39	0.11	48	0.462	177	1.18	7.8
3000	0.818	148	1.010	30	0.135	46	0.490	174	1.16	6.3
3500	0.824	142	0.876	21	0.147	44	0.507	170	1.16	5.3
4000	0.812	137	0.762	13	0.168	38	0.535	167	1.14	4.3

Vce $=\mathbf{5 V}$, $\mathrm{Ic}=100 \mathrm{~mA}$

100	0.778	-144
200	0.820	-164
500	0.832	-179
800	0.833	175
1000	0.831	172
1200	0.836	169
1400	0.829	166
1600	0.831	164

27.669	111
14.559	97
5.885	84
3.691	76
2.980	71
2.464	67
2.121	61
1.867	58

0.027
0.029
0.035
0.048
0.056
0.061
0.072
0.080
0.523
0.445
0.435
0.435
0.437
0.432
0.447
0.445

0.27	30.2
0.42	27.0
0.81	22.2
0.95	18.8
1.05	16.0
1.11	14.0
1.12	12.6
1.14	11.4

S2P - Touchstone

- Touchstone file format (*.s2p)

```
! SIEMENS Small Signal Semiconductors
! VDS = 3.5 V ID = 15 mA
#GHz S MA R 50
!f S11 S21 S12 S22
!GHz MAG ANG MAG ANG MAG ANG MAG ANG
1.000 0.9800 -18.0 2.230 157.0 0.0240 74.0 0.6900-15.0
2.000 0.9500 -39.0 2.220 136.0 0.0450 57.0 0.6600-30.0
3.000 0.8900 -64.0 2.210 110.0 0.0680 40.0 0.6100-45.0
4.000 0.8200 -89.0 2.230 86.0 0.0850 23.0 0.5600-62.0
5.000 0.7400-115.0 2.190 61.0 0.0990 7.0 0.4900-80.0
6.000 0.6500-142.0 2.110
!
! f Fmin Gammaopt rn/50
!GHz dB MAG ANG -
2.000}1.000.72 27 0.8
4.000}1.400.64\quad61\quad0.5
```


Power / Matching

- Two ports in which matching influences the power transfer

Two-Port Power Gains

- Available power gain

$$
G_{A}=\frac{P_{a v L}}{P_{a v S}}=\frac{\left|S_{21}\right|^{2} \cdot\left(1-\left|\Gamma_{S}\right|^{2}\right)}{\left|1-S_{22} \cdot \Gamma_{L}\right|^{2} \cdot\left(1-\left|\Gamma_{\text {out }}\right|^{2}\right)}
$$

- Transducer power gain

$$
G_{T}=\frac{P_{L}}{P_{a v S}}=\frac{\left|S_{21}\right|^{2} \cdot\left(1-\left|\Gamma_{S}\right|^{2}\right) \cdot\left(1-\left|\Gamma_{L}\right|^{2}\right)}{\left|1-\Gamma_{S} \cdot \Gamma_{i n}\right|^{2} \cdot\left|1-S_{22} \cdot \Gamma_{L}\right|^{2}}
$$

$$
\Gamma_{i n}=\Gamma_{i n}\left(\Gamma_{L}\right)
$$

- Unilateral transducer power gain

$$
G_{T U}=\left|S_{21}\right|^{2} \cdot \frac{1-\left|\Gamma_{S}\right|^{2}}{\left|1-S_{11} \cdot \Gamma_{S}\right|^{2}} \cdot \frac{1-\left|\Gamma_{L}\right|^{2}}{\left|1-S_{22} \cdot \Gamma_{L}\right|^{2}}
$$

$$
S_{12} \cong 0 \quad \Gamma_{i n}=S_{11}
$$

Amplifier as two-port

- For an amplifier two-port we are interested in:
- stability
- power gain
- noise (sometimes - small signals)
- linearity (sometimes - large signals)

Microwave Amplifiers
Stability

Amplifier as two-port

- For an amplifier two-port we are interested in:
- stability
- power gain
- noise (sometimes - small signals)
- linearity (sometimes - large signals)

Output stability circle (CSOUT)

- Two cases possible: (a) stable outside/ (b) stable inside

Rollet's condition

- ATF-34143 at Vds=3V Id=20mA.
- @ $0.5 \div 18 \mathrm{GHz}$

μ Criterion

- ATF-34143 at Vds=3V Id=20mA.
- @ $0.5 \div 18 \mathrm{GHz}$

Unconditionally Stable

Microwave Amplifiers
Power Gain of Microwave Amplifiers

Amplifier as two-port

- For an amplifier two-port we are interested in:
- stability
- power gain
- noise (sometimes - small signals)
- linearity (sometimes - large signals)

Power / Matching

- Two ports in which matching influences the power transfer

Simultaneous matching

$$
\begin{array}{lr}
\Gamma_{\text {in }}=\Gamma_{S}^{*} \\
\Gamma_{\text {in }}=S_{11}+\frac{S_{12} \cdot S_{21} \cdot \Gamma_{L}}{1-S_{22} \cdot \Gamma_{L}} & \longrightarrow \\
\Gamma_{\text {out }}=\Gamma_{L}^{*} \\
\Gamma_{S}^{*}=S_{11}+\frac{S_{12} \cdot S_{21} \cdot \Gamma_{L}}{1-S_{22} \cdot \Gamma_{L}} & \Gamma_{\text {out }}=S_{22}+\frac{S_{12} \cdot S_{21} \cdot \Gamma_{S}}{1-S_{11} \cdot \Gamma_{S}} \\
\Gamma_{L}^{*}=S_{22}+\frac{S_{12} \cdot S_{21} \cdot \Gamma_{S}}{1-S_{11} \cdot \Gamma_{S}}
\end{array}
$$

- We find Γ_{S}

$$
\begin{gathered}
\Gamma_{S}=S_{11}^{*}+\frac{S_{12}^{*} \cdot S_{21}^{*}}{1 / \Gamma_{L}^{*}-S_{22}^{*}} \quad \Gamma_{L}^{*}=\frac{S_{22}-\Delta \cdot \Gamma_{S}}{1-S_{11} \cdot \Gamma_{S}} \\
\Gamma_{S} \cdot\left(1-\left|S_{22}\right|^{2}\right)+\Gamma_{S}^{2} \cdot\left(\Delta \cdot S_{22}^{*}-S_{11}\right)=\Gamma_{S} \cdot\left(\Delta \cdot S_{11}^{*} \cdot S_{22}^{*}-\left|S_{22}\right|^{2}-\Delta \cdot S_{12}^{*} \cdot S_{21}^{*}\right)+ \\
\\
+S_{11}^{*} \cdot\left(1-\left|S_{22}\right|^{2}\right)+S_{12}^{*} \cdot S_{21}^{*} \cdot S_{22}
\end{gathered}
$$

Simultaneous matching

- Simultaneous matching can be achieved if and only if the amplifier is unconditionally stable at the operating frequency, and $|\Gamma|<1$ solutions are those with "-" sign of quadratic solutions

$$
\begin{array}{ll}
\Gamma_{S}=\frac{B_{1}-\sqrt{B_{1}^{2}-4 \cdot\left|C_{1}\right|^{2}}}{2 \cdot C_{1}} & \Gamma_{L}=\frac{B_{2}-\sqrt{B_{2}^{2}-4 \cdot\left|C_{2}\right|^{2}}}{2 \cdot C_{2}} \\
\begin{cases}B_{1}=1+\left|S_{11}\right|^{2}-\left|S_{22}\right|^{2}-|\Delta|^{2} \\
C_{1}=S_{11}-\Delta \cdot S_{22}^{*}\end{cases} & \left\{\begin{array}{l}
B_{2}=1+\left|S_{22}\right|^{2}-\left|S_{11}\right|^{2}-|\Delta|^{2} \\
C_{2}=S_{22}-\Delta \cdot S_{11}^{*}
\end{array}\right.
\end{array}
$$

Microwave Amplifiers
Design for Specified Gain

Amplifier as two-port

- For an amplifier two-port we are interested in:
- stability
- power gain
- noise (sometimes - small signals)
- linearity (sometimes - large signals)

Design for Specified Gain

- Assumes the amplifier device unilateral

$$
G_{T U}=\left|S_{21}\right|^{2} \cdot \frac{1-\left|\Gamma_{S}\right|^{2}}{\left|1-S_{11} \cdot \Gamma_{S}\right|^{2}} \cdot \frac{1-\left|\Gamma_{L}\right|^{2}}{\left|1-S_{22} \cdot \Gamma_{L}\right|^{2}} \quad \quad S_{12} \cong 0 \quad \Gamma_{i n}=S_{11}
$$

- Maximum power gain

$$
\begin{array}{ll}
\Gamma_{S}=S_{11}^{*} \\
\Gamma_{L}=S_{22}^{*}
\end{array} \quad G_{T U \text { max }}=\frac{1}{1-\left|S_{11}\right|^{2}} \cdot\left|S_{21}\right|^{2} \cdot \frac{1}{1-\left|S_{22}\right|^{2}}
$$

Unilateral figure of merit

- Allows estimation of the error introduced by the unilateral assumption

$$
\frac{1}{(1+U)^{2}}<\frac{G_{T}}{G_{T U}}<\frac{1}{(1-U)^{2}} \quad U=\frac{\left|S_{12}\right| \cdot\left|S_{21}\right| \cdot\left|S_{11}\right| \cdot\left|S_{22}\right|}{\left(1-\left|S_{11}\right|^{2}\right) \cdot\left(1-\left|S_{22}\right|^{2}\right)}
$$

- We compute U then the maximum and minimum deviation of $G_{T U}$ from G_{T}
- this deviation must be accounted in the design as a reserve gain against the target gain

$$
-20 \cdot \log (1+U)<G_{T}[d B]-G_{T U}[d B]<-20 \cdot \log (1-U)
$$

Design for Specified Gain

- In the unilateral assumption:

$$
\begin{aligned}
& G_{T U}=\frac{1-\left|\Gamma_{S}\right|^{2}}{\left|1-S_{11} \cdot \Gamma_{S}\right|^{2}} \cdot\left|S_{21}\right|^{2} \cdot \frac{1-\left|\Gamma_{L}\right|^{2}}{\left|1-S_{22} \cdot \Gamma_{L}\right|^{2}} \\
& G_{S}=\frac{1-\left|\Gamma_{S}\right|^{2}}{\left|1-S_{11} \cdot \Gamma_{S}\right|^{2}} \\
& G_{0}=\left|S_{21}\right|^{2} \\
& G_{L}=G_{S}=\frac{1-\left|\Gamma_{L}\right|^{2}}{\left|1-S_{S 2} \cdot \Gamma_{L}\right|^{2}} \\
& G_{L}=G_{L}\left(\Gamma_{L}\right)
\end{aligned}
$$

$\mathrm{G}_{\mathrm{s}}\left(\Gamma_{\mathrm{s}}\right)$

$$
\mathbf{G}_{\mathbf{S}}\left(\Gamma_{\mathbf{S}}\right)
$$

$\mathrm{G}_{\mathrm{s}}\left(\Gamma_{\mathrm{s}}\right)$, constant value contours

$\mathrm{G}_{\mathrm{s}}[\mathrm{dB}]\left(\Gamma_{\mathrm{s}}\right)$, constant value contours

Input section constant gain circles

$$
C_{S}=\frac{g_{S} \cdot S_{11}^{*}}{1-\left(1-g_{S}\right) \cdot\left|S_{11}\right|^{2}} \quad R_{S}=\frac{\sqrt{1-g_{S}} \cdot\left(1-\left|S_{11}\right|^{2}\right)}{1-\left(1-g_{S}\right) \cdot\left|S_{11}\right|^{2}}
$$

- The centers of each family of circles lie along straight lines given by the angle of $\Gamma_{\text {max }}=S_{11}^{*}$
- Circles are plotted (traditionally, CAD) in logarithmic scale ([dB])
- formulas are in linear scale!
- The circle for $G_{S}=0 \mathrm{~dB}$ will always pass through the origin of the complex plane (center of the Smith chart)

ADS

- Circles are plotted for requested values (in dB!) - It is usefull to compute $\mathrm{G}_{\text {smax } \text { and } \mathrm{G}_{\text {Lmax }} \text { before }}$
- in order to request relevant circles

Microwave Amplifiers
Low-Noise Amplifier Design

Amplifier as two-port

- For an amplifier two-port we are interested in:
- stability
- power gain
- noise (sometimes - small signals)
- linearity (sometimes - large signals)

Noise Figure F

- The noise figure F, is a measure of the reduction in signal-to-noise ratio between the input and output of a device, when (by definition) the input noise power is assumed to be the noise power resulting from a matched resistor at To $=290 \mathrm{~K}$ (reference noise conditions)

$$
F=\left.\frac{S_{i} / N_{i}}{S_{o} / N_{o}}\right|_{T_{0}=290 K} \quad V_{n(e f)}=\sqrt{4 k T B R} \begin{array}{r}
P_{n}=k T B
\end{array}
$$

Noise Figure F

- We identify the two terms:
- amplified input noise
" internally generated noise
- When the input noise does not correspond to reference noise conditions ($\mathrm{N} 1 \neq \mathrm{No}$)
- the internally generated noise does not change

$$
N_{2}=N_{0} \cdot G(F-1) \cdot N_{0} \cdot G
$$

$$
N_{2}=N_{1} \cdot G+(F-1) \cdot N_{0} \cdot G
$$

Continue

Noise figure of a cascaded system

$$
P_{1}=\xrightarrow[T_{0}]{S_{1}+N_{1}} \xrightarrow{\substack{G_{1} \\ F_{1} \\ T_{e 1}}} \xrightarrow{P_{2}=S_{2}+N_{2}} \xrightarrow{\substack{G_{2} \\ F_{2} \\ T_{e 2}}} \xrightarrow{P_{3}=S_{3}+N_{3}}
$$

$$
\begin{aligned}
& N_{2}=N_{1} \cdot G_{1}+\left(F_{1}-1\right) \cdot N_{0} \cdot G_{1} \\
& N_{3}=N_{2} \cdot G_{2}+\left(F_{2}-1\right) \cdot N_{0} \cdot G_{2} \\
& G_{c a s}=G_{1} \cdot G_{2} \\
& N_{3}=N_{1} \cdot G_{c a s}+\left(F_{c a s}-1\right) \cdot N_{0} \cdot G_{c a s} \\
& \downarrow \\
& N_{3}=\left[N_{1} \cdot G_{1}+\left(F_{1}-1\right) \cdot N_{0} \cdot G_{1}\right] \cdot G_{2}+\left(F_{2}-1\right) \cdot N_{0} \cdot G_{2} \\
& N_{3}=N_{1} \cdot G_{1} \cdot G_{2}+\left(F_{1}-1\right) \cdot N_{0} \cdot G_{1} \cdot G_{2}+\left(F_{2}-1\right) \cdot N_{0} \cdot G_{2}
\end{aligned}
$$

Noise figure of a cascaded system

$$
P_{1}=\xrightarrow[T_{0}]{S_{1}+N_{1}} \xrightarrow{\substack{G_{1} \\ F_{1} \\ T_{e 1}}} \xrightarrow{P_{2}=S_{2}+N_{2}} \xrightarrow{\substack{G_{2} \\ F_{2} \\ T_{e 2}}} \xrightarrow{ }
$$

$$
\xrightarrow[T_{0}]{P_{1}=S_{1}+N_{1}} \xrightarrow[\substack{G_{1} G_{2} \\ F_{\text {cas }} \\ T_{\text {ecas }}}]{\substack{ \\ }} \xrightarrow{P_{3}=S_{3}+N_{3}}
$$

$$
N_{3}=N_{1} \cdot G_{1} \cdot G_{2}+\left(F_{1}-1\right) \cdot N_{0} \cdot G_{1} \cdot G_{2}+\left(F_{2}-1\right) \cdot N_{0} \cdot G_{2}
$$

$$
G_{c a s}=G_{1} \cdot G_{2} \quad N_{3}=N_{1} \cdot G_{c a s}+\left(F_{c a s}-1\right) \cdot N_{0} \cdot G_{c a s}
$$

$$
\left(F_{1}-1\right) \cdot N_{0} \cdot G_{1} \cdot G_{2}+\left(F_{2}-1\right) \cdot N_{0} \cdot G_{2}=\left(F_{c a s}-1\right) \cdot N_{0} \cdot G_{1} \cdot G_{2}
$$

$$
F_{c a s}=F_{1}+\frac{1}{G_{1}}\left(F_{2}-1\right)
$$

Noise figure of a cascaded system

(a)

$$
G_{c a s}=G_{1} \cdot G_{2} \quad F_{\text {cas }}=F_{1}+\frac{1}{G_{1}}\left(F_{2}-1\right)
$$

- Friis Formula (!linear scale)

$$
F_{c a s}=F_{1}+\frac{F_{2}-1}{G_{1}}+\frac{F_{3}-1}{G_{1} \cdot G_{2}}+\frac{F_{4}-1}{G_{1} \cdot G_{2} \cdot G_{3}}+\cdots
$$

Friis Formula (noise)

$$
F_{c a s}=F_{1}+\frac{F_{2}-1}{G_{1}}+\frac{F_{3}-1}{G_{1} \cdot G_{2}}+\frac{F_{4}-1}{G_{1} \cdot G_{2} \cdot G_{3}}+\cdots
$$

- Friis Formula shows that:
- the overall noise figure of a cascaded system is largely determined by the noise characteristics of the first stage
- the noise introduced by the following stages is reduced:
- -1
- division by G (usually G > 1)

Friis Formula (noise)

$$
F_{c a s}=F_{1}+\frac{F_{2}-1}{G_{1}}+\frac{F_{3}-1}{G_{1} \cdot G_{2}}+\frac{F_{4}-1}{G_{1} \cdot G_{2} \cdot G_{3}}+\cdots
$$

- Effects of Friis Formula:
- in multi stage amplifiers:
- it's essential that the first stage is as noiseless as possible even if that means sacrificing power gain
- the following stages can be optimized for power gain
- in single stage amplifiers:
- in the input matching circuit it's important to have noiseless elements (pure reactance, lossless lines)
- output matching circuit has less influence on the noise (noise generated at this level appears when the desired signal has already been amplified by the transistor)

$$
V_{n(e f)}=\sqrt{4 k T B R} \quad P_{n}=k T B
$$

Noise Figure of a Mismatched Amplifier

- An input mismatched amplifier $(\Gamma \neq 0)$

$N_{2}=N_{1} \cdot G \cdot\left(1-|\Gamma|^{2}\right)+(F-1) \cdot N_{0} \cdot G=N_{1} \cdot G \cdot\left(1-|\Gamma|^{2}\right)+\frac{F-1}{1-|\Gamma|^{2}} \cdot N_{0} \cdot G \cdot\left(1-|\Gamma|^{2}\right)$
$N_{2}=N_{1} \cdot G_{e c h}+\left(F_{e c h}-1\right) \cdot N_{0} \cdot G_{e c h} \quad F_{e c h}=1+\frac{F-1}{1-|\Gamma|^{2}} \geq F$
- Good noise figure requires good impedance matching

Example

ATF-34143 at Vds=3V Id=20mA.

@ 5 GHz

- S $11=0.64 \angle 139^{\circ}$
- S12 $=0.119 \angle-21^{\circ}$
- S21 $=3.165 \angle 16^{\circ}$
- S22 = $0.22 \angle 146^{\circ}$
- Fmin $=0.54$ (tipic [dB]
- $\Gamma_{\text {opt }}=0.45 \angle 174^{\circ}$
- $r_{n}=0.03$

```
!ATF-34143
!S-PARAMETERS at Vds=3V Id=20mA. LAST UPDATED 01-29-99
```

\# ghz s mar 50
$2.00 .75-1266.306900 .088 \quad 230.26-120$
$2.50 .72-1455.438750 .095150 .25-140$ $3.00 .69-1624.762620 .10270 .23-156$
$\begin{array}{llllllllllll}4.0 & 0.65 & 166 & 3.806 & 38 & 0.111 & -8 & 0.22 & 174\end{array}$
$\begin{array}{lllllllll}5.0 & 0.64 & 139 & 3.165 & 16 & 0.119 & -21 & 0.22 & 146\end{array}$
$\begin{array}{lllllllll}6.0 & 0.65 & 114 & 2.706 & -5 & 0.125 & -35 & 0.23 & 118\end{array}$
$7.00 .66892 .326-270.129-490.2591$
$8.00 .69672 .017-470.133-620.2967$
$\begin{array}{llllllllllllll}9.0 & 0.72 & 48 & 1.758 & -66 & 0.135 & -75 & 0.34 & 46\end{array}$
! FREQ Fopt GAMMAOPT RN/Zo
! GHZ dB MAG ANG
2.00 .190 .71660 .09
2.50 .230 .65830 .07
3.00 .290 .591020 .06
$\begin{array}{llllllllll}4.0 & 0.42 & 0.51 & 138 & 0.03\end{array}$
$5.0 \quad 0.540 .451740 .03$
$\begin{array}{lllllllll}6.0 & 0.67 & 0.42 & -151 & 0.05\end{array}$
$\begin{array}{lllllllllll}7.0 & 0.79 & 0.42 & -118 & 0.10\end{array}$
$8.00 .920 .45-880.18$
$9.01 .040 .51-630.30$
10-1.16-0.61-43-0.46

Example

Stabilization, input series resistor

Stabilization, input shunt resistor

Stabilization, output series resistor

$$
R_{S L}=1 \div 10 \Omega
$$

Stabilization, output shunt resistor

Noise figure of a two-port amplifier

- 3 noise parameters (2reals + 1 complex):

$$
\begin{gathered}
F_{\min }, r_{n}=\frac{R_{N}}{Z_{0}}, \Gamma_{\text {opt }} \\
F=F_{\min }+\frac{R_{N}}{G_{S}} \cdot\left|Y_{S}-Y_{\text {opt }}\right|^{2}
\end{gathered} \begin{array}{r}
Y_{S}=\frac{1}{Z_{0}} \cdot \frac{1-\Gamma_{S}}{1+\Gamma_{S}} \\
F=F_{\min }+4 \cdot r_{n} \cdot \frac{\left|\Gamma_{S}-\Gamma_{\text {opt }}\right|^{2}}{\left(1-\left|\Gamma_{S}\right|^{2}\right) \cdot\left|1+\Gamma_{\text {opt }}\right|^{2}}
\end{array}
$$

- $\Gamma_{\text {opt }}$ optimum source reflection coefficient that results in minimum noise figure

$$
\Gamma_{S}=\Gamma_{o p t} \Rightarrow F=F_{\min }
$$

$F\left(\Gamma_{5}\right)$

$\mathrm{F}[\mathrm{dB}]\left(\Gamma_{s}\right)$

$F\left(\Gamma_{S}\right)[d B]$

F[dB] $\left(\Gamma_{s}\right)$, constant value contours

$$
F\left(\Gamma_{\mathbf{S}}\right)[\mathrm{dB}]
$$

$\mathrm{G}_{\mathrm{s}}[\mathrm{dB}]\left(\Gamma_{\mathrm{s}}\right)$, constant value contours

「opt $=0.45 \angle 174^{\circ}$

Circles of constant noise figure

$$
F=F_{\min }+4 \cdot r_{n} \cdot \frac{\left|\Gamma_{S}-\Gamma_{o p t}\right|^{2}}{\left(1-\left|\Gamma_{S}\right|^{2}\right) \cdot\left|1+\Gamma_{o p t}\right|^{2}}
$$

- We define N (noise figure parameter)
- N constant for F constant

$$
N=\frac{\left|\Gamma_{S}-\Gamma_{\text {opt }}\right|^{2}}{1-\left|\Gamma_{S}\right|^{2}}=\frac{F-F_{\min }}{4 \cdot r_{n}} \cdot\left|1+\Gamma_{\text {opt }}\right|^{2}
$$

$$
\left(\Gamma_{S}-\Gamma_{o p t}\right) \cdot\left(\Gamma_{S}^{*}-\Gamma_{o p t}^{*}\right)^{*}=N \cdot\left(1-\left|\Gamma_{S}\right|^{2}\right)
$$

$$
\Gamma_{S} \cdot \Gamma_{S}^{*}+N \cdot\left|\Gamma_{S}\right|^{2}-\left(\Gamma_{S} \cdot \Gamma_{o p t}^{*}-\Gamma_{S}^{*} \cdot \Gamma_{o p t}\right)+\Gamma_{o p t} \cdot \Gamma_{o p t}^{*}=N
$$

$$
\begin{gathered}
\Gamma_{S} \cdot \Gamma_{S}^{*}-\frac{\Gamma_{S} \cdot \Gamma_{\text {opt }}^{*}-\Gamma_{S}^{*} \cdot \Gamma_{\text {opt }}}{N+1}+\Gamma_{\text {opt }} \cdot \Gamma_{\text {opt }}^{*}=\left.\frac{N-\left|\Gamma_{\text {opt }}\right|^{2}}{N+1}\right|^{|a+b|^{2}=(a+b) \cdot(a+b)^{*}=(a+b) \cdot\left(a^{*}+b^{*}\right)=|a|^{2}+|b|^{2}+a^{*} \cdot b+\left.a \cdot b^{*}\right|^{2}} \frac{(N+1)^{2}}{}
\end{gathered}
$$

Circles of constant noise figure

Circles of constant noise figure

$$
\left|\Gamma_{S}-\frac{\Gamma_{o p t}}{N+1}\right|=\frac{\sqrt{N \cdot\left(N+1-\left|\Gamma_{o p t}\right|^{2}\right)}}{N+1} \quad N=\frac{F-F_{\min }}{4 \cdot r_{n}} \cdot\left|1+\Gamma_{o p t}\right|^{2}
$$

$$
\left|\Gamma_{S}-C_{F}\right|=R_{F} \quad C_{F}=\frac{\Gamma_{o p t}}{N+1} \quad R_{F}=\frac{\sqrt{N \cdot\left(N+1-\left|\Gamma_{o p t}\right|^{2}\right)}}{N+1}
$$

- The locus in the complex plane Γ_{S} of the points with constant noise figure is a circle
- Interpretation: Any reflection coefficient Γ_{S} which plotted in the complex plane lies on the circle drawn for $F_{\text {circle }}$ will lead to a noise factor $F=F_{\text {circle }}$
- Any reflection coefficient Γ_{S} plotted outside this circle will lead to a noise factor $\mathrm{F}>\mathrm{F}_{\text {circle }}$
- Any reflection coefficient Γ_{S} plotted inside this circle will lead to a noise factor $\mathrm{F}<\mathrm{F}_{\text {circle }}$

ADS

Circles of constant noise figure

- The noise internally generated by the transistor depends only by the input matching circuit
- A minimum noise figure is possible $\left(\mathrm{NF}_{\text {min }}-\right.$ a datasheet/"s2p file" parameter for the transistor)
- If we design a low noise amplifier (LNA) the usual design technique is as follows:
- design of the input matching circuit solely (largely) for noise optimization
- design of output matching circuit for gain compensation/optimization (if lossy circuits are used the output matching circuit noise can be added but the transistor noise is not influenced)

LNA - Low Noise Amplifier

- Usually a transistor suitable for implementing an LNA at a certain frequency will have input gain circles and noise circles in the same area for Γ_{S}

Matching - 1

- Connecting the amplifier (transistor) directly to the source with Zo generate a reflection coefficient seen towards the source equal with o (complex number, $\Gamma_{o}=0+0 \cdot j$)
- most of the time this reflection coefficient does not offer optimum noise/gain

Matching - 2

- We plot on the complex plane (Smith Chart) the stability/gain/noise circles (depending on the particular application)
- We choose a point with a suitable position relative to these circles (also application dependent)
- We determine the input reflection coefficient corresponding to this point, Γ_{S}

$$
\Gamma_{S}=0.412 \angle-177.966^{\circ}
$$

Matching - 3

- We insert the input matching circuits which allows the transistor to see towards the source the previously determined reflection coefficient Γ_{S}

Matching - 4

- Easiest to design matching section consists in the insertion of (in order from the transistor towards the Z_{o} source):
- a series Z_{o} line, with electrical length θ
- a shunt stub, open-circuited, made from a Z_{0} line, with electrical length $\theta_{\text {sp }}$

Matching - 5

- Computation depends solely on Γ_{S} (magnitude and phase)

$$
\cos \left(\varphi_{S}+2 \theta\right)=-\left|\Gamma_{S}\right|
$$

$$
\tan \theta_{s p}=\frac{\mp 2 \cdot\left|\Gamma_{S}\right|}{\sqrt{1-\left|\Gamma_{S}\right|^{2}}}
$$

- The sign (+/-) chosen for the series line equation imposes the sign used for the shunt stub equation

Shunt stub matching, L7

Example, LNA @ 5 GHz

ATF-34143 at Vds=3V Id=20mA.
@ 5 GHz

- S11 = $0.64 \angle 139^{\circ}$
- S12 $=0.119 \angle-21^{\circ}$
- S21 $=3.165 \angle 16^{\circ}$
- S22 = $0.22 \angle 146^{\circ}$
- Fmin $=0.54$ (tipic [dB]
- $\Gamma_{\text {opt }}=0.45 \angle 174^{\circ}$
- $r_{n}=0.03$
!ATF-34143
!S-PARAMETERS at $\mathrm{Vds}=3 \mathrm{~V}$ Id=20mA. LAST UPDATED 01-29-99
\# ghz s mar 50
$2.00 .75-1266.306900 .088 \quad 230.26-120$
$2.50 .72-1455.438750 .095150 .25-140$ $3.00 .69-1624.762620 .10270 .23-156$
$\begin{array}{llllllllllll}4.0 & 0.65 & 166 & 3.806 & 38 & 0.111 & -8 & 0.22 & 174\end{array}$
$\begin{array}{llllllll}5.0 & 0.64 & 139 & 3.165 & 16 & 0.119 & -21 & 0.22 \\ 146\end{array}$
$\begin{array}{llllllllll}6.0 & 0.65 & 114 & 2.706 & -5 & 0.125 & -35 & 0.23 & 118\end{array}$
$7.00 .66892 .326-270.129-490.2591$
$8.00 .6967 \quad 2.017-470.133-620.2967$
$\begin{array}{lllllllllllll}9.0 & 0.72 & 48 & 1.758 & -66 & 0.135 & -75 & 0.34 & 46\end{array}$
! FREQ Fopt GAMMAOPT RN/Zo
!GHZ dB MAG ANG
2.00 .190 .71660 .09
2.50 .230 .65830 .07
3.00 .290 .591020 .06
$\begin{array}{llllllllll}4.0 & 0.42 & 0.51 & 138 & 0.03\end{array}$
$5.0 \quad 0.540 .451740 .03$
$\begin{array}{llllll}6.0 & 0.67 & 0.42 & -151 & 0.05\end{array}$
$\begin{array}{lllllllllll}7.0 & 0.79 & 0.42 & -118 & 0.10\end{array}$
$8.00 .920 .45-880.18$
$9.01 .040 .51-630.30$
10-1.16-0.61-43-0.46

Example, LNA @ 5 GHz

- Low Noise Amplifier
- At the input matching a compromise is required between:
- noise (input constant noise figure circles)
" gain (input constant gain circles)
- stability (input stability circle)
- At the output matching noise is not influenced. A compromise is required between :
- gain (output constant gain circles)
- stability (output stability circle)

Example, LNA @ 5 GHz

$$
\begin{aligned}
& U=\frac{\left|S_{12}\right| \cdot\left|S_{21}\right| \cdot\left|S_{11}\right| \cdot\left|S_{22}\right|}{\left(1-\left|S_{11}\right|^{2}\right) \cdot\left(1-\left|S_{22}\right|^{2}\right)}=0.094 \quad-0.783 d B<G_{T}[d B]-G_{T U}[d B]<0.861 d B \\
& G_{T U \text { max }}=\frac{1}{1-\left|S_{11}\right|^{2}} \cdot\left|S_{21}\right|^{2} \cdot \frac{1}{1-\left|S_{22}\right|^{2}}=17.83 \quad G_{T U \text { max }}[d B]=12.511 d B \\
& G_{0}=\left|S_{21}\right|^{2}=10.017=10.007 d B \\
& G_{S \text { max }}=\frac{1}{1-\left|S_{11}\right|^{2}}=1.694=2.289 \mathrm{~dB} \quad G_{L \text { max }}=\frac{1}{1-\left|S_{22}\right|^{2}}=1.051=0.215 \mathrm{~dB}
\end{aligned}
$$

- In this particular case $G_{\text {Lmax }}=0.21 \mathrm{~dB}$, the transistor could be used directly connected to the 50Ω load
- The absence of the output matching circuit is not recommended. While the attainable power gain is low, it's absence eliminates the possibility to use it to compensate an improper gain generated by the noise optimization of the input matching circuit

Input matching circuit

- For the input matching circuit
- noise circle CZ: 0.75 dB
- input constant gain circles CCCIN: $1 \mathrm{~dB}, 1.5 \mathrm{~dB}, 2 \mathrm{~dB}$
- We choose (small Q \rightarrow wide bandwidth) position m1

Input matching circuit

- If we can afford a 1.2dB decrease of the input gain for better NF, Q ($\mathrm{Gs}=1 \mathrm{~dB}$), position m 1 above is better
- We obtain better (smaller) NF

Input matching circuit

- Position $m 1$ in complex plane (Smith Chart)

$$
\begin{array}{cl}
\Gamma_{S}=0.412 \angle-178^{\circ} & \left|\Gamma_{S}\right|=0.412 ; \quad \varphi=-178^{\circ} \\
\cos (\varphi+2 \theta)=-\left|\Gamma_{S}\right| & \operatorname{Im}\left[y_{S}(\theta)\right]=\frac{\mp 2 \cdot\left|\Gamma_{S}\right|}{\sqrt{1-\left|\Gamma_{S}\right|^{2}}} \\
\cos (\varphi+2 \theta)=-0.412 \Rightarrow & (\varphi+2 \theta)= \pm 114.33^{\circ}
\end{array}
$$

$$
(\varphi+2 \theta)=\left\{\begin{array}{l}
+114.33^{\circ} \\
-114.33^{\circ}
\end{array} \quad \theta=\left\{\begin{array}{l}
146.2^{\circ} \\
31.8^{\circ}
\end{array} \quad \operatorname{Im}\left[y_{s}(\theta)\right]=\left\{\begin{array}{l}
-0.904 \\
+0.904
\end{array} \quad \theta_{s p}=\left\{\begin{array}{l}
137.9^{\circ} \\
42.1^{\circ}
\end{array}\right.\right.\right.\right.
$$

Output matching circuit

- output constant gain circles CCCOUT: -0.4dB, -0.2 dB, odB,+0.2 dB
- the lack of noise restrictions allows optimization for better gain (close to maximum - position m4)

Output matching circuit

- Position m_{4} in complex plane (Smith Chart)

$$
\begin{array}{cl}
\Gamma_{L}=0.186 \angle-132.9^{\circ} & \left|\Gamma_{L}\right|=0.186 ; \quad \varphi=-132.9^{\circ} \\
\cos (\varphi+2 \theta)=-\left|\Gamma_{L}\right| & \operatorname{Im}\left[y_{L}(\theta)\right]=\frac{-2 \cdot\left|\Gamma_{L}\right|}{\sqrt{1-\left|\Gamma_{L}\right|^{2}}}=-0.379 \\
\cos (\varphi+2 \theta)=-0.186 \Rightarrow & (\varphi+2 \theta)= \pm 100.72^{\circ}
\end{array}
$$

$$
(\varphi+2 \theta)=\left\{\begin{array}{l}
+100.72^{\circ} \\
-100.72^{\circ}
\end{array} \quad \theta=\left\{\begin{array}{l}
116.8^{\circ} \\
16.1^{\circ}
\end{array} \quad \operatorname{Im}\left[y_{L}(\theta)\right]=\left\{\begin{array}{l}
-0.379 \\
+0.379
\end{array} \quad \theta_{s p}=\left\{\begin{array}{l}
159.3^{\circ} \\
20.7^{\circ}
\end{array}\right.\right.\right.\right.
$$

LNA

- We estimate a gain (in unilateral assumption, $\pm 0.9 \mathrm{~dB}$)

$$
\begin{aligned}
& G_{T}[d B]=G_{S}[d B]+G_{0}[d B]+G_{L}[d B] \\
& G_{T}[d B]=1 d B+10 d B+0.2 d B=11.2 d B
\end{aligned}
$$

- We estimate a noise factor well bellow 0.75 dB (quite close to the minimum $\sim 0.6 \mathrm{~dB}$)

ADS

freq, GHz

ADS

Microwave Filters

Assignment

- this structure is frequently encountered in radiocommunication systems

Microwave Filters

- Two ways of implementing filters in microwave frequency range
- microwave specific structures (coupled lines, dielectric resonators, periodic structures)
- filter synthesis with lumped elements followed by implementation with transmission lines
- the first strategy leads to more efficient filters but:
- has lower generality
- design is often difficult (lack of analytical relationships)

Filter synthesis

- Filter is designed with lumped elements (L/C) followed by implementation with distributed elements (transmission lines)
- general
- analytical relationships easy to implement on the computer
- efficient
- The preferred procedure is insertion loss method

Insertion loss method

$$
P_{L R}=\frac{P_{S}}{P_{L}}=\frac{1}{1-|\Gamma(\omega)|^{2}}
$$

- $|\Gamma(\omega)|^{2}$ is an even function of ω

$$
\begin{aligned}
& |\Gamma(\omega)|^{2}=\frac{M\left(\omega^{2}\right)}{M\left(\omega^{2}\right)+N\left(\omega^{2}\right)} \\
& P_{L R}=1+\frac{M\left(\omega^{2}\right)}{N\left(\omega^{2}\right)}
\end{aligned}
$$

- Choosing M and N polynomials appropriately leads to a filter with a completely specified frequency response

Insertion loss method

- We control the power loss ratio/attenuation introduced by the filter:
- in the passband (pass all frequencies)
- in the stopband (reject all frequencies)

© John Wiley \& Sons, Inc. All rights reserved.

Filter specifications

- Attenuation
- in passband
- in stopband
- most often in dB
- Frequency range
- passband
- stopband
- cutoff frequency $\omega_{1}{ }^{\prime}$ usually normalized
 (= 1)

Insertion loss method

- We choose the right polynomials to design an low-pass filter (prototype)
- The low-pass prototype are then converted to the desired other types of filters
- low-pass, high-pass, bandpass, or bandstop

Practical low-pass prototypes responses

- Maximally flat filters (Butterworth, binomial): provide the flattest possible passband response
- Equal ripple filters (Chebyshev): provide a sharper cutoff but the passband response will have ripples
- Elliptic function filters, they have equal-ripple responses in the passband as well as in the stopband,
- Linear phase filters, offer linear phase response in the passband to avoid signal distortion (important in some applications)

Maximally Flat/Equal ripple LPF Prototype

Elliptic function LPF Prototype

Figure 8.22
© John Wiley \& Sons, Inc. All rights reserved.

Maximally Flat LPF Prototype

- Polynomial

$$
P_{L R}=1+k^{2} \cdot\left(\frac{\omega}{\omega_{c}}\right)^{2 N}
$$

- For $\omega \gg \omega_{c}$

$$
P_{L R} \approx k^{2} \cdot\left(\omega / \omega_{c}\right)^{2 N}
$$

- attenuation increases $=$
attenuation increases $=$ at a rate of $20 \cdot \mathrm{NdB} /$ decade
- k gives the attenuation at cutoff frequency (3dB cutoff imposes $\mathrm{k}=1$)

Equal Ripple LPF Prototype

- Polynomial

$$
P_{L R}=1+k^{2} \cdot T_{N}^{2}\left(\frac{\omega}{\omega_{c}}\right)
$$

- For $\omega \gg \omega_{c}$

$$
P_{L R} \approx \frac{k^{2}}{4} \cdot\left(\frac{2 \cdot \omega}{\omega_{c}}\right)^{2 N}
$$

- attenuation increases
 at a rate of $20 \cdot \mathrm{~N} \mathrm{~dB} /$ decade (also)
- attenuation is $\left(2^{2 N}\right) / 4$ greater than the binomial response at any given frequency where $\omega \gg \omega_{c}$
- the passband ripples: $1+k^{2}, k$ gives the ripple

Order (N) of the Maximally Flat filter

$$
n \geq \frac{\log \left(\frac{10^{\frac{L_{A s}}{10}}-1}{10^{\frac{L_{A r}}{10}}-1}\right)}{2 \cdot \log \frac{\omega_{s}^{\prime}}{\omega_{1}^{\prime}}}
$$

- !attenuations in dB

Order (N) of the Equal Ripple filter

- !attenuations in dB

Maximally flat filter prototypes

3 dB Equal-ripple filter prototypes

0.5 dB Equal-ripple filter prototypes

Prototype Filters

(b)

Prototype Filters

- Prototype filters are:
- Low-Pass Filters (LPF)
- cutoff frequency $\omega_{0}=1 \mathrm{rad} / \mathrm{s}\left(\mathrm{f}_{\mathrm{o}}=0.159 \mathrm{~Hz}\right)$
- connected to a source with $\mathrm{R}=1 \Omega$
- The number of reactive elements (L/C) is the order of the filter (N)
- Reactive elements are alternated: series L / shunt C
- There two prototypes with the same response, a prototype beginning with a shunt C element, and a prototype beginning with a series L element

Prototype Filters

- We define filter parameters $\mathrm{g}_{\mathrm{i}} \mathrm{i}=0, \mathrm{~N}+1$
- g_{i} are the element values in the prototype filter

$$
\begin{aligned}
g_{0} & =\left\{\begin{array}{l}
\text { generator resistance } R_{0}^{\prime} \text { if } g_{1}=C_{1}^{\prime} \\
\text { generator conductance } G_{0}^{\prime} \text { if } g_{1}=L_{1}^{\prime}
\end{array}\right. \\
\left.g_{k}\right|_{k=\overline{1, N}} & =\left\{\begin{array}{l}
\text { inductance for series inductors } \\
\text { capacitance for shunt capacitors }
\end{array}\right. \\
g_{N+1} & =\left\{\begin{array}{l}
\text { load resistance } R_{N+1}^{\prime} \text { if } g_{N}=C_{N}^{\prime} \\
\text { load conductance } G_{N+1}^{\prime} \text { if } g_{N}=L_{N}^{\prime}
\end{array}\right.
\end{aligned}
$$

Maximally Flat LPF Prototype

- Formulas for filter parameters

$$
\begin{aligned}
& g_{0}=1 \\
& g_{k}=2 \cdot \sin \left[\frac{(2 \cdot k-1) \cdot \pi}{2 \cdot N}\right] \quad, \quad k=1, N \\
& g_{N+1}=1
\end{aligned}
$$

Maximally Flat LPF Prototype

TABLE 8.3 Element Values for Maximally Flat Low-Pass Filter Prototypes $\left(g_{0}=1\right.$, $\omega_{c}=1, N=1$ to 10)

\boldsymbol{N}	$\boldsymbol{g}_{\mathbf{1}}$	$\boldsymbol{g}_{\mathbf{2}}$	$\boldsymbol{g}_{\mathbf{3}}$	$\boldsymbol{g}_{\mathbf{4}}$	$\boldsymbol{g}_{\mathbf{5}}$	$\boldsymbol{g}_{\mathbf{6}}$	$\boldsymbol{g}_{\mathbf{7}}$	$\boldsymbol{g}_{\mathbf{8}}$	$\boldsymbol{g}_{\mathbf{9}}$	$\boldsymbol{g}_{\mathbf{1 0}}$	$\boldsymbol{g}_{\mathbf{1 1}}$
1	2.0000	1.0000									
2	1.4142	1.4142	1.0000								
3	1.0000	2.0000	1.0000	1.0000							
4	0.7654	1.8478	1.8478	0.7654	1.0000						
5	0.6180	1.6180	2.0000	1.6180	0.6180	1.0000					
6	0.5176	1.4142	1.9318	1.9318	1.4142	0.5176	1.0000				
7	0.4450	1.2470	1.8019	2.0000	1.8019	1.2470	0.4450	1.0000			
8	0.3902	1.1111	1.6629	1.9615	1.9615	1.6629	1.1111	0.3902	1.0000		
9	0.3473	1.0000	1.5321	1.8794	2.0000	1.8794	1.5321	1.0000	0.3473	1.0000	
10	0.3129	0.9080	1.4142	1.7820	1.9754	1.9754	1.7820	1.4142	0.9080	0.3129	1.0000

[^0]
Equal-ripple LPF Prototype

- Formulas for filter parameters (iterative)

$$
\begin{gathered}
a_{k}=\sin \left[\frac{(2 \cdot k-1) \cdot \pi}{2 \cdot N}\right], \quad k=1, N \quad \beta=\ln \left(\operatorname{coth} \frac{L_{A r}}{17.37}\right) \\
\gamma=\sinh \left(\frac{\beta}{2 \cdot N}\right) \quad b_{k}=\gamma^{2}+\sin ^{2}\left(\frac{k \cdot \pi}{N}\right), \quad k=1, N \\
g_{1}=\frac{2 \cdot a_{1}}{\gamma} \\
g_{k}=\frac{4 \cdot a_{k-1} \cdot a_{k}}{b_{k-1} \cdot g_{k-1}}, \quad k=2, N \\
g_{N+1}= \begin{cases}1 & \text { for odd } N \\
\operatorname{coth}^{2}\left(\frac{\beta}{4}\right) & \text { for even } N\end{cases}
\end{gathered}
$$

TABLE 8.4 Element Values for Equal-Ripple Low-Pass Filter Prototypes $\left(g_{0}=1, \omega_{c}=\right.$ $1, N=1$ to $10,0.5 \mathrm{~dB}$ and 3.0 dB ripple)

0.5 dB Ripple											
N	g_{1}	g_{2}	g_{3}	g_{4}	g_{5}	g_{6}	g_{7}	g_{8}	g_{9}	g_{10}	g_{11}

| 1 | 0.6986 | 1.0000 | | | | | | | | | | | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 1.4029 | 0.7071 | 1.9841 | | | | | | | | | | |
| 3 | 1.5963 | 1.0967 | 1.5963 | 1.0000 | | | | | | | | | |
| 4 | 1.6703 | 1.1926 | 2.3661 | 0.8419 | 1.9841 | | | | | | | | |
| 5 | 1.7058 | 1.2296 | 2.5408 | 1.2296 | 1.7058 | 1.0000 | | | | | | | |
| 6 | 1.7254 | 1.2479 | 2.6064 | 1.3137 | 2.4758 | 0.8696 | 1.9841 | | | | | | |
| 7 | 1.7372 | 1.2583 | 2.6381 | 1.3444 | 2.6381 | 1.2583 | 1.7372 | 1.0000 | | | | | |
| 8 | 1.7451 | 1.2647 | 2.6564 | 1.3590 | 2.6964 | 1.3389 | 2.5093 | 0.8796 | 1.9841 | | | | |
| 9 | 1.7504 | 1.2690 | 2.6678 | 1.3673 | 2.7239 | 1.3673 | 2.6678 | 1.2690 | 1.7504 | 1.0000 | | | |
| 10 | 1.7543 | 1.2721 | 2.6754 | 1.3725 | 2.7392 | 1.3806 | 2.7231 | 1.3485 | 2.5239 | 0.8842 | 1.9841 | | |

3.0 dB Ripple											
N	g_{1}	g_{2}	g_{3}	g_{4}	g_{5}	g_{6}	g_{7}	g8	g_{9}	g_{10}	g_{11}
1	1.9953	1.0000									
2	3.1013	0.5339	5.8095								
3	3.3487	0.7117	3.3487	1.0000							
4	3.4389	0.7483	4.3471	0.5920	5.8095						
5	3.4817	0.7618	4.5381	0.7618	3.4817	1.0000					
6	3.5045	0.7685	4.6061	0.7929	4.4641	0.6033	5.8095				
7	3.5182	0.7723	4.6386	0.8039	4.6386	0.7723	3.5182	1.0000			
8	3.5277	0.7745	4.6575	0.8089	4.6990	0.8018	4.4990	0.6073	5.8095		
9	3.5340	0.7760	4.6692	0.8118	4.7272	0.8118	4.6692	0.7760	3.5340	1.0000	
10	3.5384	0.7771	4.6768	0.8136	4.7425	0.8164	4.7260	0.8051	4.5142	0.6091	5.8095

[^1]For even N order of the filter ($N=2,4,6$, 8 ...) equal-ripple filters must closed by a load impedance $\mathrm{g}_{\mathrm{N}+1} \neq 1$ If the application doesn't allow this, supplemental impedance matching is required (quarterwave transformer, binomial ...) to $\mathrm{g}_{\mathrm{L}}=1$

Table 8.4

Example

- Design a 3rd order bandpass filter with 0.5 dB ripples in passband. The center frequency of the filter should be 1 GHz . The fractional bandwidth of the passband should be 10\%, and the impedance 50Ω.

LPF Prototype

- 0.5 dB equal-ripple table or design formulas:
- $\mathrm{g} 1=1.5963=\mathrm{L}_{1} / \mathrm{C}_{3}$,
- $\mathrm{g} 2=1.0967=\mathrm{C} 2 / \mathrm{L} 4$,
- $93=1.5963=L_{3} / C_{5}$,
- $94=1.000=R_{L}$

LPF Prototype

$-\omega_{0}=1 \mathrm{rad} / \mathrm{s}\left(\mathrm{f}_{\mathrm{o}}=\omega_{0} / 2 \pi=0.159 \mathrm{~Hz}\right)$

Contact

- Microwave and Optoelectronics Laboratory
- http://rf-opto.etti.tuiasi.ro
- rdamian@etti.tuiasi.ro

[^0]: Source: Reprinted from G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures, Artech House, Dedham, Mass., 1980, with permission.

[^1]: Source: Reprinted from G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures, Artech House, Dedham, Mass.,1980, with permission.

